2x^2+4x=3(5+x)

Simple and best practice solution for 2x^2+4x=3(5+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+4x=3(5+x) equation:



2x^2+4x=3(5+x)
We move all terms to the left:
2x^2+4x-(3(5+x))=0
We add all the numbers together, and all the variables
2x^2+4x-(3(x+5))=0
We calculate terms in parentheses: -(3(x+5)), so:
3(x+5)
We multiply parentheses
3x+15
Back to the equation:
-(3x+15)
We get rid of parentheses
2x^2+4x-3x-15=0
We add all the numbers together, and all the variables
2x^2+x-15=0
a = 2; b = 1; c = -15;
Δ = b2-4ac
Δ = 12-4·2·(-15)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*2}=\frac{-12}{4} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*2}=\frac{10}{4} =2+1/2 $

See similar equations:

| 41/5x-10=106 | | 23=y/5+9 | | −4=18a+16 | | w/3-17=24 | | 9x+1=5+9 | | 5-4x/3+1=2 | | 7x+2+2x+8+27=180 | | 5/3x+1/3x=21/3+7/3 | | 19r-13=9+10r-13 | | 101+3x+67=180 | | 7x+8(x+1)=3(2x+4)+5 | | -2(w–7)+10w=34 | | 6(n-5)–11n=0 | | 5x=3=15 | | 5n+6=2(3+5n) | | 5b+16=-4+4b | | 7/2x1/2x=271/2+9/2x | | 14x-16=8x-14 | | 18t=16+20t | | 8x-6=x-15 | | 7d-8=6d | | -9j+3-2=-7-10j | | 5/6r=44/5 | | (2x+16.5)=(4x+7.5) | | 7(-9-8x)=-231 | | -r+10=-10-5r | | 11a=1,331 | | 2.5(2x+5)=5x+2.5 | | 14-8x=2+8x-16 | | (2x+6)/3-x=3 | | 23-(5+x)=20 | | a+0.81=6.30 |

Equations solver categories